Discovery of Genes Related to Witches Broom Disease in Paulownia tomentosa × Paulownia fortunei by a De Novo Assembled Transcriptome
نویسندگان
چکیده
In spite of its economic importance, very little molecular genetics and genomic research has been targeted at the family Paulownia spp. The little genetic information on this plant is a big obstacle to studying the mechanisms of its ability to resist Paulownia Witches' Broom (PaWB) disease. Analysis of the Paulownia transcriptome and its expression profile data are essential to extending the genetic resources on this species, thus will greatly improves our studies on Paulownia. In the current study, we performed the de novo assembly of a transcriptome on P. tomentosa × P. fortunei using the short-read sequencing technology (Illumina). 203,664 unigenes with a mean length of 1,328 bp was obtained. Of these unigenes, 32,976 (30% of all unigenes) containing complete structures were chosen. Eukaryotic clusters of orthologous groups, gene orthology, and the Kyoto Encyclopedia of Genes and Genomes annotations were performed of these unigenes. Genes related to PaWB disease resistance were analyzed in detail. To our knowledge, this is the first study to elucidate the genetic makeup of Paulownia. This transcriptome provides a quick way to understanding Paulownia, increases the number of gene sequences available for further functional genomics studies and provides clues to the identification of potential PaWB disease resistance genes. This study has provided a comprehensive insight into gene expression profiles at different states, which facilitates the study of each gene's roles in the developmental process and in PaWB disease resistance.
منابع مشابه
Transcriptome-Wide Profiling and Expression Analysis of Diploid and Autotetraploid Paulownia tomentosa × Paulownia fortunei under Drought Stress
Paulownia is a fast-growing deciduous hardwood species native to China, which has high ecological and economic value. In an earlier study, we reported ploidy-dependent differences in Paulownia drought tolerance by the microscopic observations of the leaves. Autotetraploid Paulownia has a higher resistance to drought stress than their diploid relatives. In order to obtain genetic information on ...
متن کاملPlant-Pathogen Interaction, Circadian Rhythm, and Hormone-Related Gene Expression Provide Indicators of Phytoplasma Infection in Paulownia fortunei
Phytoplasmas are mycoplasma-like pathogens of witches' broom disease, and are responsible for serious yield losses of Paulownia trees worldwide. The molecular mechanisms of disease development in Paulownia are of considerable interest, but still poorly understood. Here, we have applied transcriptome sequencing technology and a de novo assembly approach to analyze gene expression profiles in Pau...
متن کاملProteome Profiling of Paulownia Seedlings Infected with Phytoplasma
Phytoplasma is an insect-transmitted pathogen that causes witches' broom disease in many plants. Paulownia witches' broom is one of the most destructive diseases threatening Paulownia production. The molecular mechanisms associated with this disease have been investigated by transcriptome sequencing, but changes in protein abundance have not been investigated with isobaric tags for relative and...
متن کاملPlant-Pathogen Interaction-Related MicroRNAs and Their Targets Provide Indicators of Phytoplasma Infection in Paulownia tomentosa × Paulownia fortunei.
Paulownia witches' broom (PaWB) caused by a phytoplasma, has caused extensive losses in the yields of paulownia timber and resulted in significant economic losses. However, the molecular mechanisms in Paulownia that underlie the phytoplasma stress are poorly characterized. In this study, we use an Illumina platform to sequence four small RNA libraries and four degradome sequencing libraries der...
متن کاملLong Non-Coding RNAs Responsive to Witches’ Broom Disease in Paulownia tomentosa
Paulownia witches’ broom (PaWB) disease caused by phytoplasmas is a fatal disease that leads to considerable economic losses. Long non-coding RNAs (lncRNAs) have been demonstrated to play critical regulatory roles in posttranscriptional and transcriptional regulation. However, lncRNAs and their functional roles remain poorly characterized in Paulownia. To identify lncRNAs and investigate their ...
متن کامل